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Abstract  24 

Drought and N addition have been shown to affect tree hydraulic traits, but few studies have been 25 

made on their interactions across species with different wood types or leaf forms. We examined the 26 

responses of hydraulic conductance and xylem anatomical traits of Quercus mongolica (ring-porous 27 

with simple-leaves), Fraxinus mandshurica (ring-porous with compound-leaves), and Tilia 28 

amurensis (diffuse-porous with simple-leaves) to drought, N addition and their interactions. Drought 29 

stress decreased current-year xylem-specific conductivity in stems (Ksx) and leaf hydraulic 30 

conductance (Kleaf), but N addition affected Ksx and Kleaf differently among species and watering 31 

regimes. These divergent effects were associated with different responses of anatomical traits and 32 

leaf forms. Higher mean vessel diameter in stems (Dstem) and lower vessel density in leaves (VDvein) 33 

were observed with N addition. The three-way interactive effects of drought, N addition and tree 34 

species were significant for most values of anatomical traits. These results were also reflected in 35 

large differences in vessel diameter and density among species with different wood types or leaf 36 

forms. The two-way interactive effects of drought and N addition were significant on Kleaf and 37 

predawn water potential (Ψpd), but not Ksx, indicating that leaves were more sensitive than stems to a 38 

combination of drought stress and N addition. Our results provide mechanistic insight into the 39 

variable responses of xylem water transport to the interactions of drought and N availability.  40 

 41 

1 Introduction  42 

Extreme drought events and atmospheric nitrogen (N) deposition have become two major factors in 43 

global environmental changes (Dore 2005; Reay et al. 2008; IPCC 2013), which could strongly 44 

affect plant water relations and functional traits in terrestrial ecosystems (Manes et al. 2006; Duan et 45 
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al. 2015; Borghetti et al. 2017). Drought-induced forest mortality has risen with increasing frequency, 46 

duration and intensity of droughts across the world (Allen et al. 2010; Anderegg et al. 2015, 2016; 47 

Hartmann et al. 2018). An increase in atmospheric N deposition may benefit forest ecosystems 48 

through enhancing tree growth and productivity, which in turn affect drought tolerance 49 

(Villar-Salvador et al. 2013), yet there is no clear consensus on the magnitude of this effect. 50 

Previous studies have proposed that hydraulic failure is an important physiological mechanism 51 

involved in drought-induced tree mortality (McDowell et al. 2008; Sala et al. 2010; Hartmann et al. 52 

2013; Sevanto et al. 2014; McDowell et al. 2015; Adams et al. 2017). Drought increases the risk of 53 

embolism and hydraulic dysfunction and thus partially or completely hampers xylem function, 54 

resulting in shoot dieback, and in severe cases, tree death (Brodribb and Cochard 2009; Hoffmann et 55 

al. 2011; Choat 2013). Different wood types (e.g. ring-porous and diffuse-porous) reflect different 56 

responses to a trade-off between vulnerability and conductivity (Taneda and Sperry 2008). 57 

Ring-porous trees generally have wide vessels but may experience more embolism than 58 

diffuse-porous trees (Christman et al. 2012). Xylem anatomical traits vary among species and plant 59 

organs (Beikircher et al. 2008), which might contribute to divergent hydraulic functional or leaf 60 

stomatal conductance responses to N deposition or drought among species (Fusaro et al. 2017; 61 

Borghetti et al. 2017). Hydraulic architecture is somewhat plastic in its response to environmental 62 

conditions (Plavcova and Hacke 2012), but the pattern of its responses to drought are unclear. Plant 63 

resistance to water flow through leaves is higher than in stems (Sack et al. 2003; Wang et al. 2015), 64 

hence the hydraulic conductance of leaves has a large influence over plant water transport (Brodribb 65 

et al. 2005). 66 

Tree hydraulic traits also vary with soil nitrogen (N) conditions (Ghashghaie and Saugier 1989; 67 
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Tan and Hogan 1995; Ewers et al. 2000; Li et al. 2015). High N availability could increase xylem 68 

conduit diameter (Harvey and van den Driessche 1999), which likely enhances specific conductivity 69 

(Hacke et al. 2010). However, wider conduits with N addition may increase the vulnerability to 70 

embolism (Harvey and Van den Driessche 1999; Wheeler et al. 2005; Villar-Salvador et al. 2013; 71 

Zhang et al. 2018). Previous studies detected that N fertilization significantly reduced leaf hydraulic 72 

conductance, which in turn impacted whole-tree water use (Domec et al. 2009a), and drought altered 73 

the partitioning of the resistance between leaves and other organs (Domec et al., 2009b). However, 74 

the details of interactions between drought and N fertilization and how they affect tree hydraulic 75 

traits remain unclear. 76 

Previous studies have found synergy (Damatta et al. 2002), antagonism (Walters and Reich 77 

1989), or no interaction (Correia et al. 1989; Kleiner et al. 1992) between drought stress and N 78 

addition on the stress tolerance of plants. Dziedek et al. (2016) indicated that N deposition 79 

aggravated the drought sensitivity of European beech seedlings, whereas Zhang et al. (2014) found 80 

that N fertilization have a positive effect on water-use efficiency under low soil moisture conditions, 81 

and Villar-Salvador et al. (2013) found that N addition and drought hardening exert opposite effects 82 

on the stress tolerance of Pinus pinea L. seedlings. In addition, a number of studies demonstrated that 83 

the effects of drought on plant water transport can be influenced by N addition. For example, low N 84 

concentration of plant tissues may hinder drought tolerance (Saneoka et al. 2004; Andivia et al. 2011), 85 

while high N may increase drought or cold susceptibility (Zhu et al. 2001; Islam et al. 2009; Lin et al. 86 

2012). Many studies have revealed that N addition enhanced xylem conductance by increasing vessel 87 

diameter (Hacke et al. 2001; Bucci et al. 2006; Watanabe et al. 2008; Plavcová and Hacke 2012), but 88 

it is hard to predict the pattern of the interactions between drought and N addition from individual 89 
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effects. However, it is certain that N availability has large effects on plant hydraulic and functional 90 

attributes under drought stress conditions, thereby influencing the water economy of trees (Driessche 91 

1992; Lloret et al. 1999; Salifu and Timmer 2001; Trubat et al. 2011).    92 

    In this study, we investigated the responses of tree hydraulics to drought stress, N addition and 93 

their interactions in seven-year-old saplings from a native forest. Specifically, we tested the 94 

following two hypotheses: (i) N addition increases drought susceptibility, but species with different 95 

wood types or leaf forms have different responses of water transport capacity to drought, N addition 96 

and their interactions. A ring-porous species have greater hydraulic conductivity than a 97 

diffuse-porous species, and ring-porous species with compound-leaves show unique responses to 98 

simple-leaved species; (ii) different hydraulic responses to drought and N addition at both stems and 99 

leaf levels associate with divergent xylem anatomical traits.  100 

2 Materials and methods 101 

2.1 Descriptions of study site and tree species 102 

The experiment was conducted at the Research Station of Changbai Mountain Forest Ecosystems of 103 

Chinese Academy of Sciences, located in Jilin province, China (128°28’E, 42°24′N), with an 104 

elevation of 736 m above sea level. The site has a temperate continental climate, with mean annual 105 

temperature of 3.6 ℃ and the monthly means ranging from -15.6 to 19.7 ℃. Average annual 106 

precipitation is 695 mm, of which about 60-70% is influenced by the monsoon from June to 107 

September. Two dominant ring-porous tree species (Quercus mongolica and Fraxinus mandshurica) 108 

and one diffuse-porous tree species (Tilia amurensis) were selected for the present study. Among two 109 

ring-porous species, Quercus mongolica is a simple-leaved tree species, and Fraxinus mandshurica 110 

is a compound-leaved species. They are all light-demanding temperate deciduous tree species that 111 
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can grow up to 30 m in height and 1 m in breast height diameter.  112 

2.2 Experimental design and treatments  113 

One-year old saplings were planted in individual pots in 2011. The pots were filled with forest 114 

surface soils collected near the experimental site and the mean diameter of the soil interface was 115 

34.25 cm for each pot (41 cm outer diameter × 28 cm high). The mean concentrations of soil carbon 116 

(C), nitrogen (N) and C/N ratio were 55.62±2.45 g kg
-1

,
 
4.27±0.23 g kg

-1
 and 13.05±0.13, 117 

respectively. Saplings of similar size (~1.5 m) were selected for each species. The potted saplings of 118 

each species were divided into three groups: well-watered (maintained at field capacity which was 119 

measured by cutting ring (oven-drying) method described by Zhu (1996) and O'Kelly and Sivakumar 120 

(2014), which is based on removing soil moisture by oven-drying a soil sample at 105 ± 2℃ until the 121 

weight remains constant), moderate drought (MW, 40-50% field capacity) and severe drought (SW, 122 

20-30% field capacity). Soil moisture was measured in each pot at 30 min intervals using capacitance 123 

probes (Stevens Hydraprobe, Stevens Water Monitoring Systems, Inc., USA). Soil moisture was 124 

measured and maintained between 0.38 and 0.40 for the well-watered condition. Each group was 125 

subjected to four N addition levels to simulate N deposition intensity ranging from minimal nitrogen 126 

(N0), low nitrogen (N1, 23 kg N ha
−1 

year
−1

), medium nitrogen (N2, 46 kg N ha
−1 

year
−1

) and high 127 

nitrogen (N3, 69 kg N ha
−1 

year
−1

). Urea solutions with different N addition concentrations (0, 0.028, 128 

0.056 and 0.084 mol l
-1

) were sprayed into the pots once every month (45 ml per pot) from May to 129 

October in 2017. Pots were placed in a 3.5-m-high transparent rain-out shelter in an open area to 130 

maintain different drought stress conditions, and plants were watered every one or two days 131 

according to the capacitance probes data to maintain relatively constant soil moisture. Six replicate 132 

saplings were selected for each treatment. 133 
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2.3 Leaf water potential measurements  134 

Leaf water potential was measured with a pressure chamber (Model 1505D, PMS Instrument 135 

Company, USA) during consecutive sunny days in August in 2017. Leaf samples for predawn (Ψpd ) 136 

and midday (Ψmd) water potentials were collected before sunrise (06:00) and at midday 137 

(12:00-14:00), respectively. Leaves were cut from saplings and immediately sealed in plastic bags 138 

containing a moist towel and kept in a cooler until balancing pressures were determined in the 139 

laboratory at the research station within 1 h of sample collection. Three different leaves from each of 140 

the same four individuals per species and treatment were sampled for leaf water potential 141 

measurements.  142 

2.4 Leaf hydraulic conductance 143 

Leaf hydraulic conductance (Kleaf, mmol m
-2

 s
-1

 MPa
-1

) was measured in August 2017, determined as  144 

                                𝐾𝑙𝑒𝑎𝑓 = 𝐸 ∆𝛹⁄                                   (2) 145 

Where 𝐸(mmol m
-2

 s
-1

) is the average transpiration rate per unit leaf area measured using a portable 146 

photosynthesis system (LI-6400XT, LI-COR Inc., USA) under saturating light. For each treatment, 147 

the photosynthetic irradiance was maintained at 1200 μmol m
-2

 s
-1

 at the leaf surface and the leaf 148 

cuvette temperature was maintained at 26 ± 1.5 ℃. Measurements were made after the transpiration 149 

rate was stable (~ 5 minutes) and subsequently five data points were collected. Nearby leaves were 150 

covered with aluminum foil for at least 30 minutes prior to each measurement of water potential. 151 

After measurement of transpiration rate, leaf samples and the covered leaves were cut immediately 152 

from saplings and sealed in plastic bags containing a moist towel and transported to the laboratory to 153 

measure leaf water potential. ∆𝛹(MPa) is the leaf water potential difference between covered and 154 

nearby uncovered leaves. Four different leaves from each sapling and species were measured for 155 
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transpiration rate and leaf water potential. 156 

2.5 Xylem-specific conductivity 157 

At the end of August 2017, we measured xylem-specific conductivity of current-year branches in 158 

each species and treatment (Sperry et al. 1987). Briefly, current-year branches ~ 30 cm in length 159 

were cut off under water in the morning and transported to the laboratory immediately with the cut 160 

end submerged in water at all times. Longitudinal sections were made to measure vessel length of 161 

current-year branches; we found mean vessel length was 0.19, 0.13 and 0.11cm for Q. mongolica, F. 162 

mandshurica and T. amurensis, respectively. Based on these observations, a stem segment ~5 cm in 163 

length (~3 mm in diameter) was re-cut under water and removed to facilitate connection to the tubing 164 

system, following best practices (Wheeler et al. 2013, Torres-Ruiz et al. 2015). Stem segments were 165 

flushed with perfusion solution (1 mmol L
-1

 CaCl2 + 10 mmol L
-1

 KCl) in the tubing system for 166 

hydraulic measurements. The perfusion solution was filtered to 0.22μm pore diameter under 0.5 kpa 167 

pressure by vacuum pump (Vacuubrand MD1, GMBH, Germany) to remove air. A constant hydraulic 168 

head of 45 cm was used to generate a pressure that drove the solution flow through the segments. 169 

Hydraulic conductivity (Kh, kg m s
−1

 MPa
−1

) was calculated as: 170 

                                 𝐾ℎ =
𝐽𝑉

∆𝑃 ∆𝐿⁄
                                    (1)                                    171 

Where 𝐽𝑉 is the flow rate through the stem segment (kg s
-1

), and ∆𝑃 ∆𝐿⁄ is the pressure gradient 172 

across the segment (MPa m
-1

). Specific hydraulic conductivity (Ksx, kg m
-1

 s
−1

 MPa
−1

) was calculated 173 

as the ratio of Kh and the cross-sectional area of the xylem. All hydraulic samples were collected 174 

within three sunny days and all hydraulic measurements were done in five days.  175 

2.6 Xylem anatomy  176 

Xylem anatomical measurements were performed on cross-sections of the collected current-year 177 

stem samples and fully expanded leaves. Leaf anatomical observations were conducted on leaf main 178 
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veins. Paraffin sectioning and light microscopic observations methods were used according to the 179 

procedure described in Li. (2009) and Spannl et al. (2016). Briefly, current-year stem segments were 180 

cut ~0.5 cm and leaves including main vein cut ~0.5×0.5 cm
2
, then fixed in FAA (70% formalin–181 

acetic acid–alcohol, 43.5% ethanol 10% formalin 3% glacial acetic acid 43.5% 43.5% distilled water) 182 

for at least 24h. Each specimen was dehydrated with increasing ethanol concentration series (30%, 183 

50%, 70%, 85%, 90% and ethanol) and cleared with xylene (TP1020, Leica, Germany), embedded in 184 

paraffin (HistoCore ArcadiaH+C, Leica, Germany) and cut into thin-sections (20 um for stems and 185 

12 um for leaves) with an electronic rotation microtome (RM2245，Leica, Germany). The sections of 186 

stems and leaves were stained with safranin-fast green and the slides were examined under a light 187 

microscope (DM2500, Leica, Germany). Mean vessel diameter (D, um) of each stem was estimated 188 

based on measurements of lumen area of all vessel appearing in the analyzed area of each image and 189 

the D of leaf main vein were estimated based the whole main vein. Vessel density (VD, no.mm
-2

) was 190 

determined as the number of vessels per xylem area. ImageJ software was used for data calculation.  191 

2.8 Foliar C and N concentration, C/N ratio and leaf mass per area (LMA) 192 

Ten to fifteen fully expanded leaves were collected from the branches that were used for hydraulic 193 

traits measurements. The foliage was photographed with a digital camera (WG-90, Pentax, Tokyo, 194 

Japan). Leaf area was measured with ImageJ software from the images. The foliage was dried in an 195 

oven at 65 ℃ for at least 72 h until dry mass was constant within 0.01 g and ground with a ball mill 196 

(MM400, Retsch, Germany). Leaf mass per area was calculated as a ratio of dry mass to leaf area. 197 

Total foliar C and N concentration were measured with an elemental analyzer (Vario EL, Elementar, 198 

Germany) and C/N ratio were analyzed. 199 

2.9 Statistical analysis  200 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article-abstract/doi/10.1093/treephys/tpz135/5681518 by Seoul N

ational U
niv (M

LX),  gloom
yblue33@

gm
ail.com

 on 08 January 2020



 10 / 32 

The SPSS 17 statistical package (SPSS Inc., Chicago, IL, USA) was used for statistical analysis. 201 

Data were analyzed for normality and homogeneity of variance before further statistical analyses. A 202 

three-way analysis of variance (ANOVA) was used to determine the interactive effects of drought 203 

stress, N addition and tree species on each of eight hydraulic and anatomical traits (Ksx, Kleaf, Ψpd, 204 

Ψmd, Dstem, VDstem, Dvein and VDstem). If warranted by significant results from the three-way ANOVA, 205 

a series of two-way ANOVAs were employed for further analysis between drought stress and N 206 

addition. If further warranted, a one-way ANOVA was applied to analyze the data for N addition 207 

effects at different levels of drought stress for each species. Multiple comparisons among values 208 

within each drought stress levels and species applying Tukey’s HSD post hoc test. Correlations 209 

between hydraulic conductivity in current-year stems and leaves with vessel diameter and density 210 

were fitted using linear regressions, with standard errors as weight in the linear regression analyses. 211 

Results were considered statistically significant at p < 0.05.  212 

 213 

3 Results 214 

N addition had no significant effects on Ksx (p > 0.05) but decreased Kleaf in Q. mongolica (p = 0.041) 215 

and T. amurensis (p = 0.021) under well-watered conditions according to one-way ANOVA analysis. 216 

N addition significantly increased foliar N concentration (p < 0.05) but decreased LMA (p < 0.05) in 217 

all species under well-watered conditions. Treatment effects on foliar C concentration and C/N ratio 218 

were dependent on species and watering regimes. No significant three-way interactive effects of 219 

drought stress, N addition and tree species were found for Ksx, Kleaf, Ψpd and Ψmd, while significant 220 

interactions were found for xylem anatomical traits (Dstem, VDstem and VDvein; p < 0.001, p = 0.023, p 221 

< 0.001, respectively; Table 1). The two-way interactive effects between drought stress and N 222 
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addition were significant for Kleaf (p < 0.001), Ψpd (p < 0.001) and xylem anatomical traits (Dstem, 223 

VDstem, Dvein and VDvein; p < 0.001), while not for Ksx (p > 0.05; Table 1). Xylem anatomical traits 224 

(Dstem, VDstem and VDvein) had significant two-way interactive effects between drought stress and tree 225 

species (p < 0.001, p = 0.01, p < 0.001, respectively; Table 1), and these effects were also significant 226 

in each tree species (p < 0.05; Table S2).  227 

3.1 Responses of leaf water potential 228 

N addition had no significant effects on Ψpd and Ψmd in Q. mongolica and F. mandshurica under 229 

well-watered and moderate drought, but decreased Ψpd (more negative) in these trees under severe 230 

drought (Fig. 1). For T. amurensis, Ψmd increased under well-watered conditions while Ψpd decreased 231 

under moderate drought with low N addition (Fig. 1c). Drought stress significantly reduced Ψpd of all 232 

three species (p = 0.011, 0.006, 0.001 for Q. mongolica, F. mandshurica and T. amurensis, 233 

respectively; Table S1), and the reduction of Ψpd was more pronounced than Ψmd (p =0.026, 0.202, 234 

0.004 for Q. mongolica, F. mandshurica and T. amurensis, respectively).  235 

3.2 Responses of leaf hydraulic conductance  236 

Kleaf was significantly decreased with increasing drought stress in all species (Fig. 2, Table S1, p < 237 

0.05). Under well-watered conditions, the Kleaf of Q. mongolica and T. amurensis were significantly 238 

decreased with N addition, but not for F. mandshurica (Fig. 2). The Kleaf of F. mandshurica decreased 239 

with increasing N addition under moderate drought, but Kleaf increased with N addition under severe 240 

drought in T. amurensis (Fig. 2).  241 

3.3 Responses of xylem-specific conductivity 242 

Ksx was variable among species and treatments, though the effects of drought and N addition on Ksx 243 

were not statistically significant in most cases (Fig. 3). Overall, the mean xylem-specific 244 
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conductivity of current-year stems (Ksx) varied from 0.37 to 0.74, 0.09 to 0.30, and 0.06 to 0.28 kg 245 

m
-1

 s
−1

 MPa
−1

 in Q. mongolica, F. mandshurica and T. amurensis, respectively (Fig. 3). Therefore, 246 

mean Ksx of Q. mongolica was more than double that of F. mandshurica and T. amurensis. Ksx 247 

increased with N addition under severe drought in Q. mongolica (Fig. 3a) and decreased with N 248 

addition under moderate drought in T. amurensis (Fig. 3c). Under drought stress, the Ksx of Q. 249 

mongolica increased with low and medium N addition, but the effects diminished or disappeared at 250 

higher N addition levels (Fig. 3a).  251 

3.4 Responses of xylem anatomical traits  252 

Xylem anatomical traits at both the stem and leaf levels varied substantially among the three tree 253 

species. Without treatment, Q. mongolica had higher Dstem (8.71±0.53 um; Fig. 4a) and Dvein 254 

(5.83±0.38 um; Fig. 5a) than F. mandshurica (7.43±0.12, 4.20±0.11 um; Fig. 4b, 5b) and T. 255 

amurensis (7.38±0.22, 4.57±0.05 um; Fig. 4c, 5c), and had significantly lower VDstem 256 

(359.81±30.92mm
-2

; Fig. 4d) and VDvein (651.86±18.11; Fig. 5d) than F. mandshurica 257 

(600.40±50.01mm
-2

, 3087.43±60.13mm
-2

; Fig. 4e, 5e) and T. amurensis (908.65 ±mm
-2

, 258 

3721.00±137.17mm
-2

; Fig. 4f, 5f ). 259 

N addition increased Dstem and Dvein (except Dvein in Q. mongolica) in all species, but decreased 260 

VDstem in T. amurensis and VDvein in all species under well-watered conditions (Fig. 4, 5). Without N 261 

addition, drought stress had significant effects on most xylem anatomical traits in F. mandshurica 262 

and T. amurensis, but not for Q. mongolica (Table S1). The interactions between drought stress and 263 

N addition were dependent on tree species and organs. For current-year stems, the changes of D were 264 

significant in Q. mongolica (p = 0.038; Fig. 4,Table S1) and T. amurensis (p = 0.001) while not for F. 265 

mandshurica (p = 0.093) under severe drought, but the changes of VD were significant in F. 266 
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mandshurica (p = 0.008) while not for Q. mongolica (p = 0.769) and T. amurensis (p = 0.457). For 267 

leaf veins, D significantly increased in Q. mongolica (p = 0.020) and F. mandshurica (p = 0.021) 268 

under moderate drought but decreased in F. mandshurica (p = 0.037) under severe drought (Fig. 5). 269 

VD significantly decreased in F. mandshurica (p = 0.009) under moderate drought. However, N 270 

addition significantly increased VD in leaves for all tree species under severe drought (Fig. 5).  271 

3.5 Responses of foliar C and N concentration, C/N ratio and leaf mass per area (LMA) 272 

Overall, the responses of foliar C and N concentration to drought, N addition and their interactions 273 

depended on tree species (Fig. 6). Foliar C concentration was significantly increased under 274 

well-watered conditions in Q. mongolica (p = 0.018; Fig. 6a) and F. mandshurica (p = 0.026; Fig. 275 

6b), but no changes were observed in T. amurensis (Fig. 6c). We also found that foliar C 276 

concentration significantly decreased in Q. mongolica under severe drought while not for other two 277 

species. N addition significantly increased foliar N concentration in Q. mongolica and F. 278 

mandshurica under differing watering regimes (p < 0.05; Fig. 6d, e). For T. amurensis, foliar N 279 

concentration significantly increased under well-watered conditions (p = 0.043), but decreased in 280 

moderate drought (p = 0.011), and exhibited no changes in severe drought (Fig. 6f). Foliar C/N ratio 281 

significantly decreased under different treatments in Q. mongolica (p < 0.05; Fig. 6g). For F. 282 

mandshurica, N addition decreased C/N ratio under moderate drought (p = 0.001; Fig. 6h). For T. 283 

amurensis, the C/N ratio decreased with N addition under well-watered condition while it increased 284 

under moderate drought (Fig. 6i). LMA was significantly decreased with N addition under 285 

well-watered conditions in all species (p < 0.05; Fig. 7), but there were no effects on most values 286 

under the interactions between N addition and drought stress. Only for Q. mongolica, N addition 287 

increased LMA under severe drought (p = 0.024; Fig. 7a). 288 
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 289 

4 Discussion 290 

Soil water and N availability can directly and indirectly affect plant water transport (Radin and 291 

Ackerson 1981; Sterck et al., 2008; Reay et al., 2008). Consistent with our hypothesis, our results 292 

showed that the selected three tree species diverged substantially in hydraulic traits coping with 293 

different levels of drought and N addition, which was associated with different wood types, leaf 294 

forms and anatomical traits. Compared with our diffuse-porous species (T. amurensis), ring-porous 295 

species (Q. mongolica and F. mandshurica) had higher stem xylem hydraulic conductivity. 296 

Consistently, we found the ring-porous species had wider stem vessel diameter. Ring-porous species 297 

simultaneously produce leaves and wide earlywood vessels during a short period in the beginning of 298 

seasonal growth, whereas for diffuse-porous species, vessel development occurs after the 299 

development of the current-year leaves (Takahashi et al. 2013; Takahashi and Takahashi 2016; Kitin 300 

and Funada 2016). Cambial activity and xylem element formation are strongly influenced by 301 

environmental conditions (Fonti et al. 2007; Begum et al. 2012), which might affect hydraulic 302 

function among woody types (Kitin and Funada 2016). Thus, further research on how cambial 303 

phenology affects hydraulics and the interactions of drought and N addition is needed. N addition 304 

decreased leaf hydraulic conductance of Q. mongolica and T. amurensis, but had no significant 305 

effects on F. mandshurica. Reduced soil-to-leaf hydraulic conductance by increasing leaf area to 306 

sapwood area ratio was observed by Bucci et al. (2006) under long-term N fertilization. The 307 

insignificant responses of F. mandshurica may be related to different leaf forms and plant allometry. 308 

F. mandshurica with compound-leaves had lower per leaflet area than simple-leaved species (Q. 309 

mongolica and T. amurensis), and had faster growth associated with higher gas exchange capacity 310 
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(Yang et al. 2019). N addition might benefit this fast-growth, reflected in significantly increased 311 

foliar N concentration even under different levels of drought stress. However, our results were 312 

conducted using a short-term pot experiment, and might differ with field-grown plants due to 313 

restricted rooting volume (McDowell et al. 2013), thus further long-term investigation in mature 314 

trees is needed. 315 

N addition significantly decreased Kleaf in Q. mongolica and T. amurensis, but had little effect 316 

on Ksx in all species (Fig. 2, 3, Table S1). The divergence among species likely relate to different 317 

stem xylem and leaf anatomical traits. Within species we found that N addition generally increased 318 

stem vessel diameter (Fig. 4), which may improve hydraulic efficiency (Goldstein et al., 2013; Julio 319 

et al., 2017). Previous studies have found that N enrichment enhances stem hydraulic conductivity 320 

(Lovelock et al., 2004; Lovelock et al., 2006a; Lovelock et al. 2006b). This is inconsistent with our 321 

results of Ksx across species. Because we found that Ksx was negatively related to VDstem (Fig. 4), 322 

which could diminish the increased hydraulic conductivity. On the other hand, stems with wider 323 

vessel diameters under high N availability are more vulnerable to xylem cavitation (Hacke et al., 324 

2010; Plavcová et al., 2013). Plants can regulate stomatal closure to maintain water flow under 325 

stressful conditions, which is associated with a reduction of Kleaf because of their direct coupling 326 

(Vilagrosa et al. 2003; Brodribb et al. 2007). Vulnerability in leaf hydraulic conductance might drive 327 

stomatal responses and thereby control water and carbon fluxes from leaves and canopies (Meinzer 328 

& Grantz, 1990; Hacke et al., 2001). On the other hand, leaf conductance decline might contribute to 329 

outside-xylem tissue vulnerability during dehydration (Scoffoni et al. 2017), which can protect the 330 

stem xylem from tension, and make leaves more vulnerable to dehydration than stems (Sperry and 331 

Ikeda 1997; Scoffoni and Sack 2017). Leaves play a critical role in the trade-off between carbon gain 332 

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/advance-article-abstract/doi/10.1093/treephys/tpz135/5681518 by Seoul N

ational U
niv (M

LX),  gloom
yblue33@

gm
ail.com

 on 08 January 2020



 16 / 32 

and water loss, however, the responses of leaf conductance and resistance to multiple stressors 333 

remain unclear and require further investigation.  334 

The effect of N addition on Kleaf and Ksx among species depended on soil water availability. N 335 

addition reduced Kleaf under moderate drought treatments and these effects were significant in F. 336 

mandshurica, the compound-leaved species. A large difference in hydraulic vulnerability exists 337 

between compound leaf petioles and leaflet laminas because compound-leaved tree species can shed 338 

their leaflet when facing unfavorable environmental water or nitrogen conditions (Liu et al. 2015). N 339 

addition increased Kleaf in T. amurensis under severe drought. These results could depend on wood or 340 

leaf hydraulic architecture. Diffuse-porous trees have narrower vessels than ring-porous trees, which 341 

are packed more densely per unit xylem area, especially in leaves (Fig. S1). As a result, the xylem of 342 

diffuse-porous species generally stays functional longer since narrower vessels are less likely to be 343 

lost to cavitation (Taneda and Sperry 2008). The non-monotonic responses of Ksx to N addition (first 344 

increased then decreased) in Q. mongolica might be attributed to nutrient imbalance (Gleeson and 345 

Good 2003; Templer 2013), which is consistent with decreased C/N ratio in our results. Low N may 346 

have some benefit for water transport under water stress but high N increased drought susceptibility 347 

by increasing vulnerability to xylem cavitation (Harvey and Van den Driessche 1999; Trubat et al. 348 

2011).  349 

The three-way interactive effects of drought stress, N addition and tree species were not 350 

significant for Ksx, Kleaf and water potential, but were significant for most values of anatomical traits 351 

(Table 1, three-way ANOVA), suggesting that hydraulic architecture responses to drought and N 352 

varied strongly among species. In addition, we found divergence among plant organs in their 353 

responses to the interactions of drought and N addition in terms of hydraulic efficiency, conductivity 354 
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and anatomical traits. The two-way interactive effects of drought stress and N addition for Ksx were 355 

not significant, but these effects for Kleaf and Ψpd were significant. Although the leaf hydraulic system 356 

represents less than 5% of the hydraulic pathway it accounts for 30-80% of the resistance to water 357 

flow through the whole-plant (Sack and Holbrook, 2006; Domec et al., 2009a; Hao et al., 2013). 358 

Leaves appear particularly sensitive to the interactive effects of drought and atmospheric N 359 

deposition. In addition, the interactive effects between drought stress and N addition were significant 360 

for all anatomical traits except VDstem among the three species (Table S2, two-way ANOVA). These 361 

results suggested that xylem hydraulic architecture was more susceptible to a combination of 362 

multiple stress factors, thereby affecting water transport processes. Notably, stem xylem-conductivity 363 

positively correlated with stem vessel diameter but leaf hydraulic conductance was negatively 364 

correlated with main vein vessel diameter in Q. mongolica (Fig. 8). However, no similar 365 

relationships were observed in the other two species (Fig. S2). Q. mongolica had lower vessel 366 

density in both stems and leaves, thus vessel diameter seems more sensitive to N addition and 367 

drought stress than vessel density. Ring-porous trees with simple leaves showed greater divergences 368 

in this pattern between stem and leaves in our study, which may be less adaptive values for such 369 

stress environments compared to compound-leaved trees (Song et al. 2017).  370 

                                                                                                                                                                                                            371 

Concluding remarks 372 

Divergences in hydraulic conductance between stem and leaves, in combination with xylem 373 

anatomical traits, affected the interactions between drought and N addition across in juveniles of 374 

three temperate tree species. The different responses of Ksx and Kleaf were associated with wood types 375 

and leaf forms. Ring-porous trees had higher hydraulic efficiency than diffuse-porous trees, and for 376 
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ring-porous species, compound-leaved trees had greater adaptive significance to environmental stress 377 

than simple-leaved trees. Drought stress decreased Kleaf, but N addition had conflicting effects that 378 

depended on tree water status, perhaps due to the compensatory effect of N fertilization on xylem 379 

anatomy. Leaves were more susceptible to N addition and drought stress than stems. The three-way 380 

interactive effects of drought, N addition and tree species were significant for xylem anatomical traits, 381 

such that hydraulic architecture was affected not only by drought and N addition, but also varied 382 

across tree species. The divergence in hydraulics between stems and leaves indicates that some tree 383 

species have different strategies at organ level for coping with interactive effects of drought and N 384 

addition, and these may contribute to the overall plant survival strategy.  385 
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Fig. 1. Responses of predawn and midday leaf water potential (Ψleaf, MPa) of (a) Q. mongolica (b) F. mandshurica 607 

(c) T. amurensis to different watering and N addition treatments. The error bar represents one standard error of all 608 

measurements for each individual tree species. Different letters indicate significant difference within each watering 609 

treatment for each species (multiple comparisons, p < 0.05). 610 
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Fig. 2. Responses of leaf hydraulic conductance (Kleaf, mmol m
-2

 s
-1

 MPa
-1

) of (a) Q. mongolica (b) F. mandshurica 618 

(c) T. amurensis to different watering and N addition treatments. The error bar represents one standard error of all 619 

measurements for each individual tree species. Different letters indicate significant difference within each watering 620 

treatment for each species (multiple comparisons, p < 0.05). 621 
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Fig. 3. Responses of xylem-specific conductivity (Ksx, kg m
-1

 s
-1

 MPa
-1

) of (a) Q. mongolica (b) F. mandshurica (c) 629 

T. amurensis to different watering and N addition treatments. Trees were watered to field capacity (well-watered), 630 

40-50% of field capacity (moderate drought), or 20-30% of field capacity (severe drought). Nitrogen addition 631 

treatments were zero (N0), +23 (N1), +46 (N2), and +69 kg N ha
−1 

year
−1

 (N3). Each error bar represents one 632 

standard error of all measurements for each individual tree species. Different letters indicate significant difference 633 

within each watering treatment for each species (multiple comparisons, p < 0.05). 634 
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Fig. 4 Responses of mean vessel diameter (D, um) and vessel density (VD, no.mm-2) of current-year stems of Q. 641 

mongolica, F. mandshurica and T. amurensis to different watering and N addition treatments. The error bar 642 

represents one standard error of all measurements for each individual tree species. Different letters indicate 643 

significant difference within each watering treatment for each species (multiple comparisons, p < 0.05). 644 
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Fig. 5 Responses of mean vessel diameter (D, um) and vessel density (VD, no.mm-2) of leaves of Q. mongolica, F. 655 

mandshurica and T. amurensis to different watering and N addition treatments. The error bar represents one 656 

standard error of all measurements for each individual tree species. Different letters indicate significant difference 657 

within each watering treatment for each species (multiple comparisons, p < 0.05). 658 
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Fig. 6 Responses of foliar C concentration (%; a, b, c), N concentration (%; d, e, f) and C/N ratio ( g, h, i) of Q. 669 

mongolica (a, d, g), F. mandshurica (b, e, h) and T. amurensis (c, f, i) to different watering and N addition 670 

treatments. Nitrogen addition treatments were zero (N0), +23 (N1), +46 (N2), and +69 kg N ha
−1 

year
−1

 (N3). Each 671 

error bar represents one standard error of all measurements for each individual tree species. Different letters 672 

indicate significant difference within each watering treatment for each species (multiple comparisons, p < 0.05). 673 
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Fig. 7 Responses of leaf mass per area (LMA) of Q. mongolica (a, d, g), F. mandshurica (b, e, h) and T. 680 

amurensis (c, f, i) to different watering and N addition treatments. Each error bar represents one standard error of 681 

all measurements for each individual tree species. Different letters indicate significant difference within each 682 

watering treatment for each species (multiple comparisons, p < 0.05).  683 
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Fig. 8 Correlations between xylem-specific conductivity (Ksx) with mean vessel diameter (Dstem, a) and vessel 691 

density (VDstem, b) in current-year stem of Q. mongolica; and correlations between leaf hydraulic conductance (Kleaf) 692 

with mean vessel diameter (Dvein, c) and vessel density (VDvein, d) in main vein of Q. mongolica. The color of the 693 

point represents N addition levels (white, N0; light gray, N1; dark gray, N2; black, N3). The error bar represents 694 

one standard error of all measurements for each individual tree species. Linear regression is fitted to the individual 695 

data in each panel. 696 
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Table 1 Results (F and P-value) of three-way ANOVA on the effects of drought stress, N addition and tree species 700 

on eight key hydraulic traits of stems and leaves. Significance at p < 0.05 are presented in bold. Ksx, xylem-specific 701 

conductivity, Kleaf, leaf hydraulic conductance, Ψpd, predawn leaf water potential, Ψpd, midday leaf water potential,  702 

Dstem, mean vessel diameter of current-year stem, VDstem, vessel density of current-year stem, Dvein, mean vessel 703 

diameter of leaf vein, VDvein, vessel density of leaf vein. 704 

 705 

 706 

Dependent 

variable 

Drought 

stress 

N 

addition 

Tree 

species 

Drought stress  

× N addition 

Drought stress  

×Tree species 

N addition 

× Tree species 

Drought stress  

× N addition 

× Tree species 

Ksx F 13.093 0.860 126.581 1.639 0.552 1.647 0.524 

p < 0.001 0.471 < 0.001 0.165 0.699 0.163 0.885 

Kleaf F 85.935 46.027 46.027 6.864 0.239 0.673 0.673 

p < 0.001 < 0.001  < 0.001 < 0.001 0.915 0.771 0.771 

Ψpd F 247.192 4.412  84.403 9.931 29.717 1.407 1.209 

p < 0.001 0.007  < 0.001 < 0.001 < 0.001 0.216 0.297 

Ψmd F 25.415 0.634 52.487 1.908 2.775 1.549 1.449 

p < 0.001 0.596 < 0.001 0.091 0.033 0.165 0.171 

Dstem F 1.777 7.435 56.643 13.434 9.157 1.780 3.758 

p 0.176 < 0.001 < 0.001 < 0.001 < 0.001 0.115 < 0.001 

VDstem F 4.643 12.376 393.062 5.986 5.008 3.837 2.167 

p 0.013 < 0.001 < 0.001 < 0.001 0.01 0.002 0.023 

Dvein F 1.047 6.058 180.905 6.020 1.534 3.733 1.430 

p 0.356 0.001 < 0.001 < 0.001 0.201 0.003 0.173 

VDvein F 3.503 2.699 798.932 18.634 11.198 1.556 3.933 

p 0.035 0.052 < 0.001 < 0.001 < 0.001 0.173 < 0.001 
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